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INVERSE OPTIMAL FILTERING METHOD FOR THE INSTRUMENTAL
SPREADING CORRECTION IN SIZE EXCLUSION CHROMATOGRAPHY

D. Alba and G.R. Meira¥*
INTEC (CONICET and Univ. Nac. del Litoral)
(3000) Santa Fe, Argentina

ABSTRACT

The Kalman filter based techniques are adapted to solve the
most general form of Tung's integral formula, i.e. when a non-uni-
form, non-symmetric calibration model is employed to correct chro-
matograms obtained in size exclusion chromatography from instru-
mental broadening errors. Through this method, the inverse smooth-
ing of a chromatogram contaminated with measurement noise of known
statistics is optimally performed by minimizing the estimation
error variance. The method is numerically very "robust", improves
the signal to noise ratio, provides good validation checks, and
does not involve any previous parameter estimation procedure.

INTRODUCTION

Most of the methods of correction for instrumental broadening
in size exclusion chromatography are based on the deterministic
integral equation by Tung (1):

+o0
z(t) =) u{t).g(t,1) dr (1)
-—00
where t,T : both represent elution time or elution volume;
z(t) : is the baseline-corrected chromatogram;

(*) To whom correspondence should be sent.
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g(t,1) : is the unit mass (or normalized) detector response
g(t), for a truly monodisperse polymer species of
retention time t; and

u(t) : is the corrected chromatogram.

With different degrees of success, numerous techniques have
been proposed for solving Eqn.(1), but most of them introduce one
or both of the following simplifications into the instrumental
spreading function:

a) g(t,t) is adopted uniform, i.e. independent of the mean reten-
tion volume <, e.g. (1,2,3,%,5,6,7); and

b) glt,t) is considered Gaussian, e.g. (8,9,10).

When the first simplification is adopted, the problem reduces to
that of a deconvolution. In the case of the non-uniform Gaussian
assumption, the variance is normally considered mean retention
volume dependent. In some cases, e.g. (9,10), wu(t) is obtained
not through a direct numerical solution of Eqn. (1), but after e-
laborate analytical procedures.

Among the few works that have attempted the direct solution
of Eqn. (1) with no assumptions on g(t,r) are those of Chang and
Huang {11) and Ishige, lLee and Hamielec (12). According to a com-
parison of different techniques in (13,14), the best numerical me-
thod so far was that of (12).

The problem in hand is, in fact, a special case of the much

+
more general one of input estimation or inverse filtering. Typic-
ally, a measurement signal mist be corrected when the transducer

frequency response is not flat over the whole signal frequency

. spectrum. For example, the inverse filtering of & ventricular

pressure record is considered in (15); and the recuperation of
seismic responses in oil prospection work is studied in (16, 17
and 18). In these last three publications, different adaptations
of the Kalman filter (with or without smoother) were proposed and
implemented to solve an inverse filtering problem.
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In the present work, the feasibility of the use of inverse
optimal smoothers for size exclusion chromatography broadening
correction is demonstrated. The method has many characteristics in
common with the mentioned works (16, 17 and 18). Nevertheless, it
will be described here with some detail; with particular emphasis

on the special features of the problem.

THEORY

The System Model

The application of the Kalman filter techniques requires a
system description by means of a linear state-space stochastic mo-
del that, in our case, will adopt the following discrete single-
input single-output form:

x(k+1) = F(k) x(k) + b(x) w(k) (2a)
z(k) = hT(k) x(k) + v(k) = y(k) + v(k) (2b)

where k = 0,1,2,... : is the independent discrete time;
x(k) : is the state vector;
w(k) and v(k) : are zero-mean, Gaussian distributed white
random sequences of variances qf{k) and
r(k) , respectively;
F(k) : is,in general, a time-varying matrix; and

b(k),hT(k) : are, in general, time-varying vectors.

The discrete stochastic version of Eqn. (1) can be written:

400

z(k) = 1 glk,k).ulky) + v(k) (3)

k°=_¢n

The time-varying calibration g(k,ko) can be considered as a
set of discrete system impulse responses, with the impulses ap-
plied at times ko . Note that in order not to introduce time
shifts between the measured and the corrected chromatogram, the
system must be assumed non-causal. This means that the response
will start to appear before the application of the impulse, norm-

ally taken to occur at the maxima or at some mean value. Fig. la
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g (k,ko)

(b)

FIGURE 1 : A time-varying spreading function {(a); and its corre-
sponding g* function (b).

represents a time-varying impulse response, with the impulses ap-
plied at different kg's . In what follows, it will be assumed

that irrespective of ko , all the responses have a finite number
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of non-zero elements. Consider now some transformations to Egn.
(3) that will allow us to obtain the system state-space model in a
straightforward fashion, and without calculations. As illustrated
by Fig. 1b, let us first define the function g*(k,k,) , such that

g*(k-koako) = g(ksko) (h)

Call —c and d the lower and upper limit of k with non-zero values
of g*(k,ky) , respectively. Then Eqn. (3) yields:

ko=k+d
2(k) = £ g*(k-Ko,ko)eulko) + v(k) (5)
ko=k-c
and with i=k-kq,
d
z(k) = ¢ g*(i,k-1).u(k-1) + v(k) (6)
i=—c

The lower part of Fig. 2 shows a non-causal flow-diagram represen-
tation of Eqn. (6), where p-l1 indicates the backshift operator
such that p-l[u(k)] = u(k-1) . The instantaneous set of weights
g* of Fig. 2 can be obtained from the successive row vectors
hT(k) of the following matrix H*, where the rows hT(k) extend

at least to the calibration limits of the chromatographic column

set.
. . - . g*(-c,k-q)
. . eve g¥(-c+l,k-d) g*¥(-c,k-d+1)
g*(d,k-d-1) g*(d~1,k-d) ... g*(-c+1l,k+c-2) g*(-c,k+c-1)
H*:
g*(d,k-d) g*(d-1,k-d+1) ... g*(-c+l,k+c-1) g*{-c,k+c)
g*(d,k-d+1) g*(d-1,k-d+2) ... g*{-c+l,k+c) g¥*(-c,k+c+l)

(7a)
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/k°=0

FIGURE 3 : H* matrix corresponding to the spreading function of
Fig. 1, showing its 45° "diagonals".

or:
[‘ c ] - . . ]
_l_lT(l.{-l) h1(1'<-1) hgfk-l) hnzk-l)

H* = | nT(k) = | hy(x)  hp(k) ... hy(k) (7v)
hT(k+1) hy(k+1) ho(k+1l) ... hy(kel)

Note that the successive L5° "diagonals" of H* are made up
of the elements of the individual impulse responses. This is il-
lustrated in Fig. 3. Let us define now n = c+d+l state variables

xy (i=1,...,n) to coincide with the successive values of the in-
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put, as indicated in Fig. 2. The system model output equation,
which is equivalent to Eqn. (2b), may thus be written:

2(k) = hT(k).x(k) + v(k) (8)
where _llT(k) is time-varying according to Eqn. (7).

The state equation itself allows the specification of the
spectral characteristics that can be simultaneously assigned to
all state variables, and consequently to u(k) which coincides
with xg41(k). These spectral characteristics are imposed by fil-
tering the white noise input w(k) +through an autoregressive op-
erator, as indicated in the upper half of Fig. 2. Note that the
order of this autoregressive operator 1s equal to the system order
(which is normally relatively high). For this reason, a very sat-
isfactory pre-filtering operation could, if desired, be imple-
mented. The state equation, which is equivalent to Egqn. (2a), will
have the following structure:

] -] .
[‘xl(kﬂ) F 01 0 ... 0 0 T x1 (k) F 0
xo(k+1) 001 ... 0 O xo(k) 0
) . .. R P I PR e
xp1(k+1) 0 0O o 1 xp-1 (k) 0
xp(k+1) f) fo f3 ovo fno1 Tn| | Xn(k) 1
N 1L I S B

Note that matrices F and b are constant and in the con-
trollable canonical form. The last row of F (that we shall call
vector 2), allows the specification of the stated spectral char-
acteristics of u(k), When f = 0 , then u(k) will be a white
noise. The inclusion of non-zero elements in f will, in general,

transform u(k) into a "coloured" random sequence.

The Inverse Optimal Smoother

Under the assumption that the system is exactly represented
by Eagns. (2), the "best" linear estimate of the state x(k) that
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can be obtained from the noisy measurements {z(k) ; 0 < k < M} is
given by the output R%(k/M) of the optimal smoother. With gfk/M)
we shall indicate the "conditional estimate of x at time k given

the measurements z up to time M". For general references see
(19,20). The smoother is optimal in the sense that at each time k,
the mean square error associated with the estimate %&(k/M) :

E{[x(k) - £(c/M) ] [x(x) - &(k/M) ]}

is smaller than that achieved by any other linear estimator. Fur-
thermore, if we also make the fairly common assumption that the
initial state and the two random sequences satisfy Gaussian proba-
bility distributions, then the mean square error is less than that
achieved by any other estimator, linear or non-linear. Fig. L il-
lustrates the optimal smoother structure. The first stage corre-

sponds to the Kalman filter and includes:
a) The discrete Riccati equation:
t(k+1/k) = F £(k/k) FT + b q(k) bT (10a)
t(k/k) = £(k/k-1) { I - h(kx) [nT(k) £(k+1/k) h(k) +
r(k)]-1 nT(k) £T(k/k-1)} (10b)

where: £(k/k) is the estimation error covariance matrix, i.e.

t(k/k) = E {[x(k) - x(k/k)] [x(k) - x(x/k)]T} (10¢)
b) The remaining algorithm:

2(k+1) = £(k+1/k) h(k+1) [BT(k+1) £(k+1/k) h(k+1) + r(k+1)]-1

(11a)
2(k+1) = 2(k+1) - hT(k+1) F %(k/k) (11b)
x(k+1/k+1) = F x(k/k) + 2(k+1) z(k+1) (11¢)

with

%(0/0) = x5 + Po h(0) [HT(0) Py B(0) + r(0)]-1 [2(0) - hT(0) xo]
(114)
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where: X, and P, : are the mean and covariance matrix of x(0) ,

respectively;
2(k+1) : is the filter gain; and
Z(k+1) : i1s the innovations sequence.

In the second stage, the fixed-interval smoother algorithm taken
from (19):

s(k) = h(k) r~1(k) hT(k) (12a)
Ak-1) = [T - z(x/k) s(k)]T [FT(k) A(k) - h(k) r-1(k) Z(k)]
(12b)
x(k/M) = x(k/k) - £(k/k) FT(x) A(k) (12¢)
with
AM) =0 (124)

is solved backwards in time.

Note that even though the filter section provides the esti-
mate x(k/k), and the smoother section the estimate Xx(k/M), we
are really only interested in the element (d+l) of these vectors,

i,e.

X447 (k/K) = G(k/k) (13a)

or

~

Xgup (E/M) = 0(k/M) (13p)

Clearly, u(k/M) is a better estimate than {i(k/k) , but in the
first case, a higher computational cost mst be paid. The variance
of the estimation error associated with U(k/k) 1is the element
(d+1,d+41) of z(k/k), and is automatically provided by the fil-
ter. The variance of the estimation error corresponding to u(k/M)
must be especially calculated however [see (19)], but is always
lower than that of the filter.

Because of the very special structure of the system model,
the filter section inherently includes a suboptimal smoother: the
so called fixed-lag smoother. 1In fact, if this lag is limited to
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d, a suboptimal estimate (better than u(k/k)) is produced, without

extra calculations. In effect, since
Xy (k+d) = x5(ktd-1) = oo = x4(k+1) = x4, (k) (14)

then,

xy (k+d fktd) = Xy, (k/k+d) (15)
and therefore,

a(k /k+d) (16)

?(1 (k+d /k+d)

In other words, the filter estimate il(k+d/k+d) is the fixed-lag
smoothed estimate of u(k), and the corresponding estimation error
variance is element (1,1) of £(k+d/k+d) . Note also that by ar-
tificially increasing the system dimension n (with an appropri-
ate inclusion of zerces on the left hand side of matrix H*), the
suboptimal smoother lag is also increased. When c¢ > d , the lag
can be increased to c¢ by filtering z(k) backwards in time.

The Algorithm Adjustment

The following parameters must be set in the given algorithm:
a) The Last now of matrnix F {now vector §)

Only two cases will be considered: £ =0 and f = (0 0O...1).
In the first case, u(k) is assumed a white noise process; in the
second a "random walk" process. By assuming u(k) a white noise,
the greatest flexibility in its estimation is provided; and one
could, for example, recuperate delta functions when analyzing mo-
nodisperse samples. When a polidisperse sample is analyzed, then a
smoothing effect (that in general improves the numerical results)
may be obtained if wu(k) is considered a random walk. As explain-
ed below, the other advantage of assuming f = (0 O...1) is relat-
ed to the mean of the innovations sequence.

b) The initial conditions x

_oandPo

In practice, it has been found adequate to choose Xg = 0 and
Po = I ; and to solve the Riccati equation with hT(0) until
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steady state conditions are reached. Then, the chromatogram above
the baseline may be directly processed. In the examples of the

following section, this procedure was adopted in all cases.
c) The measurement noise variance (k)

This value can be estimated from the noise that normally con-
taminates the detector baseline before and after the polymer peak.

It will be hereafter considered constant, of value r .
d) The Lnput variance qlk)

Consider first some ways of estimating q(k) when f = 0.
In this case, the state variables are assumed white processes with

a varlance:

2

Oxj(x) = a(k-n-1+i) ;3 (i =1,2,.4.,n) (18)
(0g(x) Wwill denote the variance of a(k), and @a(k) its mean

value). It is also easy to show that:

2 n 2
oz(k) = L hi(k) q(k-n-1+i) + r (19)
i=1

Egn. (19) has no solution because oi(k) is unknown. Even if this
function could be estimated, Eqn. (19) is of the same type of Egn.
(3} (which we are trying to solve), and therefore is still of no
practical use unless some simplifications are added. The simplest
situation is to consider w(k) stationary, and the spreading func-
tion uniform. Under these circumstances, an estimate for a con-

stant value of q mey be obtained from Eqn. (19) as follows:

2
0y =T

q = —— (208)
n 2
I hy
i=1

with
£ [2(x))?
2 1=1
Gy = — {20b)
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Eqn. (20) in general overestimates q because u(k) is a highly
correlated sequence instead of a white noise. Nevertheless, Egn.
(20) may provide an initial guess of q that can be useful if
properly handled. In case of a non-uniform spreading function, the
denominator of Eqn. (20a) could correspond to the impulse response
at an intermediate retention time.

Consider now w(k) non-stationary (i.e. q variable with k).
This assumption has been found essential for particularly ill-con-
ditioned cases. In fact, if r is accurately estimated, the opti-
mal performance of the filter-smoother is produced when the exact
a(k) 1s utilized. Note that f = 0 dimplies w(k) = u(k+c+l) .
Thus, if u(k+c+l) can be somehow estimated, then one may simply

write
(k) = [a(k+es1)]? (21)

For example, u(k+c+l) in Eqn. (21) could be the smoother sol-
ution obtained with a constant q. Alternatively, the following
approximate formula (that may be also derived from Eqn. (19)
assuming no spreading), has been found to provide satisfactory

results:

a(k) = C [z(k+e+1)]? (22)

where C is an appropriately chosen positive constant. For C = 1,
a{k) will be, in principle, underestimated for u(k) < z(k) and
overestimated when wu(k) > z(k). The estimates of gq(k) based on
Eqns. (21) or (22) have little statistical significance because
they are obtained from single values of u{k+c+l) or z(k+c+l).
This means that sudden changes in these functions will be reflect-
ed on the estimate q(k). A simple remedy is to smooth u(k+c+l)
or z(k+c+l) through an averaging filter in order to keep the
shape of these curves while eliminating the undesirable varia-

tions,

Consider now the estimation of q(k) when £ = (0 0...1).
It may be shown that when w(k) is assumed stationary, the e-
quivalent formula to Eqn. (20) is:
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qQ F — (23a)

with

M
t [az(k)]°
2 i=1
Ipz(k) = ———— (23b)
(M-1)
A simple expression for q(k) can be developed from the fact that
w(k) = u(k+c+l) - u(k+c) = au(k+c+l) , and therefore:

a(k) = [au(k+c+1)]? (o)

For the reasons given above, but particularly in this case, it is
preferable to employ averaged versions of M2  instead of AG°
as such. The following equation was found adequate:

a -
T [an (kee+141)]?
i=-a
a(k) = C! (25)

{2a+1)

where C' is an adjustable gain and (2a+l1) is the number of
points averaged at each step. Clearly, here again, an iterative
procedure that estimates q(k) from al(k), and then u(k) and
Al(k) from the filter-smoother, will normally provide the best
results. The results of the filter-smoother are not too sensitive
to its adjustment, and relatively crude estimates of the shape of
a(k) are normally sufficient for satisfactory results. For exam-
ple, in certain cases, Eqn. (25) provides a smooth q(k), with a
shape which is similar to that of z(k). In such cases, and even
when f = (0 O...1), an estimate of q(k) may be directly obtain-
ed from the simpler relationship of Ean. (22). This simplification
is conveniently utilized in Examples 2 and 3 below.

Even though the covariance matrices I(k/k-1) and £(k/k)
depend on the individual values of r and q(k), the filter or
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the smoother estimate of wu(k) is a function of the q(k)/r ratio
only. In a very 3jill-conditioned problem, the results become sen-
sitive to deviations of this ratio from its correct value. In more
relaxed situations however, relative gross errors in q(k)/r can
be absorbed with still good results.

The solution validation

The solution checks mey be classified into two nmein groups:
those which are common to any other input estimation technique,
and those specific to the method. The obvious checks in the first
group are: a) the solution must be non-negative; b) by processing
a(k) through the system spreading function, the noise-free meas-
ured function should be recuperated; and c) the area under the co-
rrected chromatogram must be equal to that of the measured curve.
It should be emphasized that the check under b) is only a neces-
sary {but not a sufficient) condition for good results; the reason
being the algoritlmic singularity of Egns. (1) or (3). This im-
plies that there are, in principle, infinite possible numerical
solutions u(k) that can recover y(k). With regards to the check
under c¢), the area under the corrected curve will be smaller than
that of the original, only when the ratio gq(k)/r 1s grossly un-
dervalued., With overvalues or moderate undervalues of alk)/r,
then numerically meaningless discrepancies are observed.

The checks which are specific to the method are all based on
the analysis of the innovations, that ideally should be zero-mean,
Gaussian white sequences. Furthermore, the observed innovations
should match the corresponding time-varying veriance estimated
through the filter:

0., . = hT(k) £(k/k-1) h(k) + r (26)

z(k)
Note that this last quantity depends again on the individual val-
ues of q(k) and r. The filter results may be optimized by ana-
lyzing the innovations (and their estimated variances) under dif-

ferent adjustments. The innovations mean will, in general, be
closer to zero with f = (0 O...1) than with f =0 . This may be
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—ulk) = O(k/M) & (k/k+d)

u(k/k)

20k y (K/M)

.

0 50 100 K

FIGURE 5 : Example 1; original curves and "best" solution with
the correct constant ratio gq/r = 100.

explained by the offset elimination effect that occurs when inte-

gration is incorporated into a closed loop.

EXAMPLES OF APPLICATION

Three applications of the technique will be considered.
While the first two examples are synthetic, the third is based on
real experimental data. All three examples were solved by means of
a VAX 11/780 computer.

Example 1

By processing the curve u(k) shown in Fig. 5 through a
time-varying filter defined by the set of impulse responses of
Fig. la, a noise-free chromatogram y(k) 4is obtained. This curve
was then corrupted by a Gaussian white noise of a relatively low
variance (10-5), to provide z(k). Taking into account only the
section of this series above the baseline, and defining the signal

to noise ratio SNR as:
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M
I z2(k)
k=1
SNR = ——m—— (27)
(M-1) r

one obtains, in this case, SNR ¥ 17400 % 1322 . Throughout this
Example f = (0 0...1) , and for simplicity a constant gq will be
adopted even though better results can, in principle, be obtained
with a variable q(k). Clearly, the best estimate for r is 1075 .
The best estimate of ¢ may be obtained from:
1 M

q=—— 1 lsu(k)]? (28)

(M- 1) k=2
Calculating this quantity for the Au(k) values above the base-
line, 0.001 is obtained. Thus, the best q/r 3is 100. Note that
if estimated through Eqn. (23), a value of q approximately 10-
fold larger would have been obtained. The results of the filter-
smoother when the best values for q and r are adopted are also
shown in Fig. 5. While the filter estimate u(k/k) fails to repro-
duce the original curve, both the fixed-lag smoother output
i(k/k+d) and the fixed-interval smoother ocutput i(k/M) are prac-
tically overlapped with wu(k). The innovations corresponding to
this case are represented in Fig. 6d, together with the estimated
iqi(k) limits. Ideally, the innovations should lie within thege
limits for approximately two thirds of the time, and this is
roughly the case in Fig. 6d. The innovations sequence z(k) is
theoretically zero-mean Gaussian white, but its variance is time-
varying and therefore #(k) is non-stationary. In spite of this
fact, it was found useful to calculate the sequence sample varian-
ce ag, the autocorrelation function and the power spectrum. Clear
ly, this approximation will not be valid when %(k) is highly non-
stationary. Figs. 6e and f illustrate the previously mentioned
statistics. In the case of the power spectrum, the highest fre-
quency shown corresponds to one half of the sampling frequency.

Both the autocorrelation and the power spectrum show some low fre-
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FIGURE 8

: Example 1; solution for gq/r
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quency oscillations. This, and the fact that the smoother esti-
mate is satisfactory while the filter estimate is not indicate
that some useful information is still remaining in the innovations
sequence.

For illustrative purposes, the problem was solved again with
the same value of r, but with erroneous estimates of q . In Figs.
7, 6a, 6b, and 6c, q = 0.1 (or q/r = 10000), while in Figs. 8,
6g, 6h, and 6i, q = 102> (or g/r = 1). Note the following:

i)  In both cases, the solutions are inadequate, but while y(k/M)
practically coincides with 2(k) when q = 0.1, this same
function is crudely off those values if g = 10> .

ii) When gq 1is overvalued, the innovations are less correlated
at high lags than if the best value of q is employed. The
opposite occurs at low lags however, and the overall variance
of % (k) is finally higher than before. If gq is under val-
ued, the situation is clearly worse at all lags.

iii) The standard deviation %3 (x) is overestimated if gq is

overvalued, and underestimated when undervalued.

iv) The high frequency components of the innovations are dominant
if q 1is overestimated. Conversely, there is a low frequency

components dominance when q is underestimated.

v) The percentages of variation of the areas under the corrected
chromatograms with respect to those under the measured curves
are -0.02%, -0.1% and -0.25% when q = 0.1, 0.001 and 10-5,

respectively.
Example 2

This Example was first suggested by Chang and Huang (6), and
attempted later on by Hamielec and co-workers (12). The problem is
illustrated in Fig. 9, which represents the following: u(k), the
uniform spreading function g(k), the broadened curve z(k) and
the recuperated u(k) by method 2 proposed in (12). Note that

while g{k) was generated from an analytical expression, and z(k)
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glk)
u(k)
k)
.05
z(k)
\N
0.
0 % m

FIGURE 9 : Example 2; [after Hamielec and co-workers (12)].

was reproduced from a table of mumbers given in (12), wu(k) and
u(k) were obtained by digitizing their graphical representations.
For this reason, minor distorsions in these last two curves are to
be expected. The solution u(k) shown in Fig 9 is practically co-
incident with that of (6), and with that of method 1 in (12).
Clearly, these techniques are not able to appropriately recover
the double-peaked input.

Consider now the solution wvia the present method. Assuming
that the integer values of the table for z(k) are all accurate
to the last digit, then one may interpret those numbers as conta-
minated by a noise v(k) of a uniform probability density func-
tion with limits at *0.5. In this case, 03 = 1/12 and we adopt
r = 0.1 . The limits of the finite spreading function were taken
at -c = d = 20. Beyond these values, the spreading function is be-
low 10-3 .

As a first attempt, one could try to solve this Example
through a constant q obtained by minimizing the variance of the
innovations sequence. The solution u(k/M) is not shown here, but
is very similar to that of Fig. 9, however. For better results, a
variable q(k) must be adopted, and Fig. 10 illustrates this sit-
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a)£=9 U(k/M) +6lz) og - 0.1899
™ C=1 0008} (k) 5 - 0.203
. Il
A 1
“33(k)
-.0005
0 50
d) oS = 0.2085
+0-
0008 Z(k) I : - 0.003
e
\\.
0. ! w —
N
-.0005 -Si(k) -2 (k)
0 50
f) o = 0.1863
+0.
0008} , 2(K) ¥ = 0.006
2(K)Zy (k/M) \ -
6 =006 % (k) ~7Z (k)
0 50 0 50

white (a,b);

a random walk sequence (c,d); and
obtained through a two-step procedure (e,f).
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R g{k)

normalized z(k)

.05 \

0 50 100

FIGURE 11 : Example 3; experimental chromatogram and spreading
function.

uation. Note first that (even though not shown), all three solu-
tions represented in Fig. 10, as well as that previously mentioned
with a constant q, manage to recuperate z(k) without appreciable

error.

The solution of Fig. 10a and 10b was obtained adopting f =0
and calculating a(k) through Eqn. (22) with C = 1. Clearly, the
peaks of u(k/M) overpass those of u(k), and the innovations
mean exhibits a certain bias. In Figs. 10c and 10d, Egqn. (22) is
used again (with C = 1), in spite of the fact that in this case,
f= (0 Ousel). The result is similar to the previous, but now the
innovations mean is very close to zero. Figs 10e and 10f were ob-
tained through the following two-step procedure: i) based on the
estimate of u(k) found in Fig. 10a, Eqn. (25) with C' = 4 was
employed to estimate q(k); and 1i) with this estimate, the
smoother was run again with f = (0 0...1) to provide the shown
results. Clearly, this solution is very acceptable. The corre-
sponding innovations have a near zero mean, and the lowest sample

variance of all three cases.
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Example 3

Curve z{(k) 4in Pig. 11 represents the chromatogram of a PS
standard of molecular weight M, = 525, when fractionated through
an A-802 Shodex column mounted on a Series 3-B Perkin Elmer liquid
chromatograph. The chromatogram of pure benzene g(k) 1is adopted
as the uniform spreading function. The polymer sample is expected
to be integrated by the first PS oligomers, with preponderance of
the pentamer. Ideally therefore, delta functions ought to be recu-
perated, with the highest peak at a molecular weight of 520.

Three possible solutions to this problem are found in Fig.
12. In all three cases, the solutions accurately recuperate the
measured chromatogram, r was estimated 5x10~> and q(k) was ob-
tained through Eqn. (22). Figs. 12a and 12b show a quite accept-
able solution, where ell oligomers from dimer to hexamer are now
clearly separated. The adjustments employed in this first solution
are: f =0 , and a C gain of 1.25 for Eqn. (22).

With C gains higher than 1.25, negative values in u(k/M) are
produced. This situation is represented by Figs. 12c and d, where
f =0 but C = 75. This value of C will clearly generate an
overestimated q{k). In this case, and in spite of the negative
values in u(k/M), the low molecular weight peaks appear to be
better separated, and two extra higher molecular weight components
seem to be also detected. The innovations sample mean and variance
indicated in Fig. 12d are lower than in Fig. 12b, but the esti-
mated i°§(k) limits confirm that this solution is not adequate.

Figs. 12e and f show a solution which is very similar to that
of Figs. 12a and b; but in this case f = (0 0...1) and C =2
were adopted. Here again, by increasing C, negative values are
also produced.

The estimates of Figs. 12a and 12e are the best obtained.
The oligomers are clearly separated, and their retention times
could be used for a more accurate column calibration. As expected,

those retention times are, with good approximation, linearly re-
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FIGURE 12 : Example 3; solutions considering u(k) white with the
appropriate C gain (a,b); with C overvalued (c,d);
and considering u(k) a random walk sequence with the
appropriate C (e,f).
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lated to the logarithm of their molecular weights.

The results of Fig. 12 seem to indicate that the lower mole-
cular weight species are better separated than the higher. This
bias is also reflected by the fact that in all cases, the innova-
tions adequately match their i“i(k) limits only on the right
hand side of the chromatogram. A possible explanation to this ef-
fect is that the spreading function is, in reality, non-uniform.
In this case, the given g(k) is only accurate at the low molecu-
lar weight end. If as predicted by (21,22), the instrumental
broadening increased towards intermediate retention volumes, then
the correction would be more pronounced on the left hand side of

the curve, and the bias would tend to be compensated.

CONCLUSIONS

The proposed technique has proved very powerful with both
synthetic and real examples, and could be clearly extended to cor-
rections in hydrodynamic chromatography (13,14). The results of
Example 2, are better than those of other techniques. The computer
program was written in FORTRAN 77 for a VAX 11/780 computer, and

is available from the authors.

The main advantages of the method are: i) it is numerically
very 'robust', thus allowing the solution of particularly ill-con-
ditioned problems; ii) because a stochastic version of Egn. (1) is
employed, all 'a priori' information on the baseline noise may be
conveniently employed; iii) under certain ideallized conditions,
the solution is optimal from the standpoint of the estimation er-
ror variance; iv) the state-space representation of the system
spreading function is obtained without calculations, thus in-
volving no assumptions about the shapes of the calibration curves;
v) the innovations analysis provides very powerful solution
checks, and vi) the measurement noise is eliminated from the cor-
rected chromatogram and the SNR of y(k) is normally higher than
that of z(k) .
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The main drawback of the method deals with the relatively
significant computational cost involved. With regards to memory,
not only the system matrix H¥* and the measured and calculated
sequences must be stored, but (more important) the whole set of
matrices $(k/k) . The computation time is alsoc relatively high.
For example, to solve an 80 point chromatogram with a calibration
curve of 55 points (Example 3 above), approximately 12 minutes are
required for the complete calculation, with half that time insumed
in the fixed-interval smoother stage. The computation time in~
creases with approximately the square of the system order nj; and
in the Kalman filter section, the main computational burden is re-~
lated to the solution of the discrete Riccati equation. Note that
if the same calibration g(k,ko) is to be repeatedly used, and
the variances q and r are maintained constant, then this equa-~
tion may be solved only once. Furthermore, when q and r are
constant and the spreading function is uniform, then only the

steady state solution of that equation is required.

In all cases considered, the results of the fixed-lag smooth-
er when the lag was made equal to ¢ or d were very similar to
those of the fixed-interval smoother. Clearly, if the fixed-lag
smoother results are adequate, not only the computation time is
approximately halved, but also the storage of the covariance ma-

trices set is no longer required.

In this work, the state variables [and consequently u(k)]
were assumed white processes if f =0 , and random walk processes
vhen f = (0 0...1) . Both assumptions were seen to provide satis-
factory results, but the innovations mean was in all cases smaller
with f = (0 0...1) . As a counterpart in this last case, the es-
timation of q{k) becomes more complex. Theoretically, the best
results would require a specification of vector f that included
all available information about u(k) . This was found not neces-
sary in the processing of chromatograms, but in a different con-
text, interesting efforts have been done in this direction al-
though meinly dealing with time-invariant systems (23,24). In a
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way, an appropriate estimation of q(k) compensates a rather

crude estimation of f.

As explained above, the main advantage of the state-space
time-varying model proposed is that no calculations for its devel-
opment are required. The high order of the model so produced,
mekes the smoother computation a relatively arduous task, however.
Alternatively, parameter estimation procedures could be employed
to identify the system through lower order models. This identifi-
cation stage could be implemented off-line, and then repeatedly
used for a given calibration. Another potential advantage of this
procedure is the elimination of the measurement noise from the set
of curves g(k,ko); while the main disadvantage is that elaborate
identification procedures for time-varying systems are not yet
fully developed. The other possible modification to the proposed
technique deals with the implementation of a variable gain scheme
for an on-line estimation of q(k) (25). Basically, the problem
consists in choosing, along the calculation, the values of q(k)
which minimize the difference between the observed and the esti-

mated innovations variance.
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